19 research outputs found

    Unsupervised Feature Learning of Human Actions as Trajectories in Pose Embedding Manifold

    Full text link
    An unsupervised human action modeling framework can provide useful pose-sequence representation, which can be utilized in a variety of pose analysis applications. In this work we propose a novel temporal pose-sequence modeling framework, which can embed the dynamics of 3D human-skeleton joints to a continuous latent space in an efficient manner. In contrast to end-to-end framework explored by previous works, we disentangle the task of individual pose representation learning from the task of learning actions as a trajectory in pose embedding space. In order to realize a continuous pose embedding manifold with improved reconstructions, we propose an unsupervised, manifold learning procedure named Encoder GAN, (or EnGAN). Further, we use the pose embeddings generated by EnGAN to model human actions using a bidirectional RNN auto-encoder architecture, PoseRNN. We introduce first-order gradient loss to explicitly enforce temporal regularity in the predicted motion sequence. A hierarchical feature fusion technique is also investigated for simultaneous modeling of local skeleton joints along with global pose variations. We demonstrate state-of-the-art transfer-ability of the learned representation against other supervisedly and unsupervisedly learned motion embeddings for the task of fine-grained action recognition on SBU interaction dataset. Further, we show the qualitative strengths of the proposed framework by visualizing skeleton pose reconstructions and interpolations in pose-embedding space, and low dimensional principal component projections of the reconstructed pose trajectories.Comment: Accepted at WACV 201

    Object Pose Estimation from Monocular Image using Multi-View Keypoint Correspondence

    Full text link
    Understanding the geometry and pose of objects in 2D images is a fundamental necessity for a wide range of real world applications. Driven by deep neural networks, recent methods have brought significant improvements to object pose estimation. However, they suffer due to scarcity of keypoint/pose-annotated real images and hence can not exploit the object's 3D structural information effectively. In this work, we propose a data-efficient method which utilizes the geometric regularity of intraclass objects for pose estimation. First, we learn pose-invariant local descriptors of object parts from simple 2D RGB images. These descriptors, along with keypoints obtained from renders of a fixed 3D template model are then used to generate keypoint correspondence maps for a given monocular real image. Finally, a pose estimation network predicts 3D pose of the object using these correspondence maps. This pipeline is further extended to a multi-view approach, which assimilates keypoint information from correspondence sets generated from multiple views of the 3D template model. Fusion of multi-view information significantly improves geometric comprehension of the system which in turn enhances the pose estimation performance. Furthermore, use of correspondence framework responsible for the learning of pose invariant keypoint descriptor also allows us to effectively alleviate the data-scarcity problem. This enables our method to achieve state-of-the-art performance on multiple real-image viewpoint estimation datasets, such as Pascal3D+ and ObjectNet3D. To encourage reproducible research, we have released the codes for our proposed approach.Comment: Accepted in ECCV-W; Code available at this http url: https://github.com/val-iisc/pose_estimatio

    AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation

    Full text link
    Supervised deep learning methods have shown promising results for the task of monocular depth estimation; but acquiring ground truth is costly, and prone to noise as well as inaccuracies. While synthetic datasets have been used to circumvent above problems, the resultant models do not generalize well to natural scenes due to the inherent domain shift. Recent adversarial approaches for domain adaption have performed well in mitigating the differences between the source and target domains. But these methods are mostly limited to a classification setup and do not scale well for fully-convolutional architectures. In this work, we propose AdaDepth - an unsupervised domain adaptation strategy for the pixel-wise regression task of monocular depth estimation. The proposed approach is devoid of above limitations through a) adversarial learning and b) explicit imposition of content consistency on the adapted target representation. Our unsupervised approach performs competitively with other established approaches on depth estimation tasks and achieves state-of-the-art results in a semi-supervised setting.Comment: CVPR 201

    UM-Adapt: Unsupervised Multi-Task Adaptation Using Adversarial Cross-Task Distillation

    Full text link
    Aiming towards human-level generalization, there is a need to explore adaptable representation learning methods with greater transferability. Most existing approaches independently address task-transferability and cross-domain adaptation, resulting in limited generalization. In this paper, we propose UM-Adapt - a unified framework to effectively perform unsupervised domain adaptation for spatially-structured prediction tasks, simultaneously maintaining a balanced performance across individual tasks in a multi-task setting. To realize this, we propose two novel regularization strategies; a) Contour-based content regularization (CCR) and b) exploitation of inter-task coherency using a cross-task distillation module. Furthermore, avoiding a conventional ad-hoc domain discriminator, we re-utilize the cross-task distillation loss as output of an energy function to adversarially minimize the input domain discrepancy. Through extensive experiments, we demonstrate superior generalizability of the learned representations simultaneously for multiple tasks under domain-shifts from synthetic to natural environments. UM-Adapt yields state-of-the-art transfer learning results on ImageNet classification and comparable performance on PASCAL VOC 2007 detection task, even with a smaller backbone-net. Moreover, the resulting semi-supervised framework outperforms the current fully-supervised multi-task learning state-of-the-art on both NYUD and Cityscapes dataset.Comment: ICCV 2019 (Oral

    iSPA-Net: Iterative Semantic Pose Alignment Network

    Full text link
    Understanding and extracting 3D information of objects from monocular 2D images is a fundamental problem in computer vision. In the task of 3D object pose estimation, recent data driven deep neural network based approaches suffer from scarcity of real images with 3D keypoint and pose annotations. Drawing inspiration from human cognition, where the annotators use a 3D CAD model as structural reference to acquire ground-truth viewpoints for real images; we propose an iterative Semantic Pose Alignment Network, called iSPA-Net. Our approach focuses on exploiting semantic 3D structural regularity to solve the task of fine-grained pose estimation by predicting viewpoint difference between a given pair of images. Such image comparison based approach also alleviates the problem of data scarcity and hence enhances scalability of the proposed approach for novel object categories with minimal annotation. The fine-grained object pose estimator is also aided by correspondence of learned spatial descriptor of the input image pair. The proposed pose alignment framework enjoys the faculty to refine its initial pose estimation in consecutive iterations by utilizing an online rendering setup along with effectiveness of a non-uniform bin classification of pose-difference. This enables iSPA-Net to achieve state-of-the-art performance on various real image viewpoint estimation datasets. Further, we demonstrate effectiveness of the approach for multiple applications. First, we show results for active object viewpoint localization to capture images from similar pose considering only a single image as pose reference. Second, we demonstrate the ability of the learned semantic correspondence to perform unsupervised part-segmentation transfer using only a single part-annotated 3D template model per object class. To encourage reproducible research, we have released the codes for our proposed algorithm.Comment: Accepted at ACMMM 2018. Code available at https://github.com/val-iisc/iSPA-Ne

    Aligning Silhouette Topology for Self-Adaptive 3D Human Pose Recovery

    Full text link
    Articulation-centric 2D/3D pose supervision forms the core training objective in most existing 3D human pose estimation techniques. Except for synthetic source environments, acquiring such rich supervision for each real target domain at deployment is highly inconvenient. However, we realize that standard foreground silhouette estimation techniques (on static camera feeds) remain unaffected by domain-shifts. Motivated by this, we propose a novel target adaptation framework that relies only on silhouette supervision to adapt a source-trained model-based regressor. However, in the absence of any auxiliary cue (multi-view, depth, or 2D pose), an isolated silhouette loss fails to provide a reliable pose-specific gradient and requires to be employed in tandem with a topology-centric loss. To this end, we develop a series of convolution-friendly spatial transformations in order to disentangle a topological-skeleton representation from the raw silhouette. Such a design paves the way to devise a Chamfer-inspired spatial topological-alignment loss via distance field computation, while effectively avoiding any gradient hindering spatial-to-pointset mapping. Experimental results demonstrate our superiority against prior-arts in self-adapting a source trained model to diverse unlabeled target domains, such as a) in-the-wild datasets, b) low-resolution image domains, and c) adversarially perturbed image domains (via UAP).Comment: NeurIPS 202

    GAN-Tree: An Incrementally Learned Hierarchical Generative Framework for Multi-Modal Data Distributions

    Full text link
    Despite the remarkable success of generative adversarial networks, their performance seems less impressive for diverse training sets, requiring learning of discontinuous mapping functions. Though multi-mode prior or multi-generator models have been proposed to alleviate this problem, such approaches may fail depending on the empirically chosen initial mode components. In contrast to such bottom-up approaches, we present GAN-Tree, which follows a hierarchical divisive strategy to address such discontinuous multi-modal data. Devoid of any assumption on the number of modes, GAN-Tree utilizes a novel mode-splitting algorithm to effectively split the parent mode to semantically cohesive children modes, facilitating unsupervised clustering. Further, it also enables incremental addition of new data modes to an already trained GAN-Tree, by updating only a single branch of the tree structure. As compared to prior approaches, the proposed framework offers a higher degree of flexibility in choosing a large variety of mutually exclusive and exhaustive tree nodes called GAN-Set. Extensive experiments on synthetic and natural image datasets including ImageNet demonstrate the superiority of GAN-Tree against the prior state-of-the-arts.Comment: ICCV 2019 (code available at https://github.com/val-iisc/GANTree

    Universal Source-Free Domain Adaptation

    Full text link
    There is a strong incentive to develop versatile learning techniques that can transfer the knowledge of class-separability from a labeled source domain to an unlabeled target domain in the presence of a domain-shift. Existing domain adaptation (DA) approaches are not equipped for practical DA scenarios as a result of their reliance on the knowledge of source-target label-set relationship (e.g. Closed-set, Open-set or Partial DA). Furthermore, almost all prior unsupervised DA works require coexistence of source and target samples even during deployment, making them unsuitable for real-time adaptation. Devoid of such impractical assumptions, we propose a novel two-stage learning process. 1) In the Procurement stage, we aim to equip the model for future source-free deployment, assuming no prior knowledge of the upcoming category-gap and domain-shift. To achieve this, we enhance the model's ability to reject out-of-source distribution samples by leveraging the available source data, in a novel generative classifier framework. 2) In the Deployment stage, the goal is to design a unified adaptation algorithm capable of operating across a wide range of category-gaps, with no access to the previously seen source samples. To this end, in contrast to the usage of complex adversarial training regimes, we define a simple yet effective source-free adaptation objective by utilizing a novel instance-level weighting mechanism, named as Source Similarity Metric (SSM). A thorough evaluation shows the practical usability of the proposed learning framework with superior DA performance even over state-of-the-art source-dependent approaches.Comment: CVPR 2020. Code available at https://github.com/val-iisc/usfd

    Class-Incremental Domain Adaptation

    Full text link
    We introduce a practical Domain Adaptation (DA) paradigm called Class-Incremental Domain Adaptation (CIDA). Existing DA methods tackle domain-shift but are unsuitable for learning novel target-domain classes. Meanwhile, class-incremental (CI) methods enable learning of new classes in absence of source training data but fail under a domain-shift without labeled supervision. In this work, we effectively identify the limitations of these approaches in the CIDA paradigm. Motivated by theoretical and empirical observations, we propose an effective method, inspired by prototypical networks, that enables classification of target samples into both shared and novel (one-shot) target classes, even under a domain-shift. Our approach yields superior performance as compared to both DA and CI methods in the CIDA paradigm.Comment: ECCV 202

    Towards Inheritable Models for Open-Set Domain Adaptation

    Full text link
    There has been a tremendous progress in Domain Adaptation (DA) for visual recognition tasks. Particularly, open-set DA has gained considerable attention wherein the target domain contains additional unseen categories. Existing open-set DA approaches demand access to a labeled source dataset along with unlabeled target instances. However, this reliance on co-existing source and target data is highly impractical in scenarios where data-sharing is restricted due to its proprietary nature or privacy concerns. Addressing this, we introduce a practical DA paradigm where a source-trained model is used to facilitate adaptation in the absence of the source dataset in future. To this end, we formalize knowledge inheritability as a novel concept and propose a simple yet effective solution to realize inheritable models suitable for the above practical paradigm. Further, we present an objective way to quantify inheritability to enable the selection of the most suitable source model for a given target domain, even in the absence of the source data. We provide theoretical insights followed by a thorough empirical evaluation demonstrating state-of-the-art open-set domain adaptation performance.Comment: CVPR 2020 (Oral). Code available at https://github.com/val-iisc/inheritun
    corecore